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Ab initio treatment of the Renner-Teller effect and 
application to various AH, and HAB molecules 

by MILJENKO PERIc 
Institute of Physical Chemistry, Faculty of Science, University of Belgrade, 

Studentski trg 16, POB 550, 110001 Beograd, Yugoslavia 

SIGRID D. PEYERIMHOFF 
Lehrstuhl fur Theoretische Chemie, Universitat Bonn, WegelerstraBe 12, 

D-5300 Bonnl, F.R. Germany 

and ROBERT J. BUENKER 
Lehrstuhl fur Theoretische Chemie, Bergische Universitat-Gesamthochschule 

Wuppertal, GauBstraSe 20, 5600 Wuppertal 1, F.R. Germany 

This paper reviews ab initio investigations of the Renner-Teller effect in a 
number of triatomic molecules. The potential surfaces for nuclear motion are 
calculated using the MRD-CI method. The calculation of vibronic energy levels and 
wave functions is performed using a simple matrix method for solution of the 
corresponding Schrodinger equation. In this approach the potential and the kinetic 
energy operators are expanded in polynomial series in the bending coordinate and 
the hamiltonian is diagonalized in a basis consisting of products of the electronic 
wave functions (or their linear combinations) calculated in the Born-Oppenheimer 
approximation with eigenfunctions of a two-dimensional harmonic oscillator. The 
method allows for the treatment of large-amplitude bending vibrations and an 
accurate consideration of non-adiabatic effects. In the second part of this paper the 
effect of various approximations, as well as some interesting technical details of 
calculations are discussed. In the third and fourth parts of this review, a summary of 
results of various calculations is given. A systematic study of dihydrides of the atoms 
belonging to the first two rows of the Periodic Table allows the recognition of some 
general trends concerning the equilibrium structure and shapes of the correspond- 
ing potential surfaces. A comparison with available experimental data shows that 
the results of ab initio calculations permit a reliable representation of observed 
spectra. Further, the structure of yet unknown spectra can be predicted. 

1. Introduction 
The interpretation of an experimentally measured molecular spectrum, as well as a 

theoretical investigation of its structure, is necessarily based on some assumptions 
which allow a reduction of the complexity of the problem to a level which promises a 
successful interpretation. One of the corner-stones in such a theoretical analysis is the 
Born-Oppenheimer approximation (Born and Oppenheimer 1927). It is motivated by 
the experimental finding that the structure of molecular spectra can, in most cases, be 
interpreted in terms of a nearly complete separation of electronic and nuclear motions. 
A suitable mathematical formulation of this concept can be achieved by neglecting the 
derivatives of the electronic wave functions with respect to the nuclear coordinates, 
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86 M .  PeriC et al. 

with the consequence that the molecular Schrodinger equation can be separated into its 
electronic and nuclear parts, coupled with each other only through a parametric 
dependence of the electronic wave function on the nuclear coordinates. Nonetheless, 
though successfully applied on a general basis, the Born-Oppenheimer approximation 
is known to break down in certain well specified situations. 

One of the most typical and therefore important examples for the inadequacy of the 
separation of electronic and nuclear motion is provided by the Renner-Teller effect 
(Renner 1934, Herzberg and Teller 1933), predicted long before the first experimental 
detection of its appearance (Ramsay 1956, Dressler and Ramsay 1957,1959). This effect 
is a consequence of a splitting of orbitally degenerate (at linear geometry) electronic 
states in the course of the bending vibrations. It is therefore characterized by a strong 
coupling of the electronic and bending motions and is usually accompanied by large- 
amplitude bending vibrations. Investigation of thiiphenomenon has been especially 
motivated by the fact that the lowest-lying electronic states of a number of triatomic 
moleculest are orbitally degenerate at linear geometry and that their spectra originate 
from transitions between the states resulting from the Renner-Teller splitting. 

The original perturbative method of Renner (1934), suitable for a treatment of the 
weak Renner-Teller effect (in which both component electronic states have linear 
equilibrium geometries) has been extended and generalized by other authors (Pople 
and Longuet-Higgins 1958, Dixon 1965, Barrow et al. 1974, Jungen and Merer 
1980a,b, Koppel et a!. 1981) who have developed more refined computation 
techniques, with the help of which it has become possible to achieve a very accurate 
fitting of experimentally measured spectra. In this review we do not intend to discuss 
these methods in great detail. The reader who is interested in these aspects of the 
general Renner-Teller problem is referred to the excellent review articles by Jungen and 
Merer (1964), Duxbury (1975) and Brown and Jorgensen (1983). 

Until a few years ago, all applications of these approaches were based on the 
potential surfaces (and other relevant parameters) derived from a fitting of the available 
experimental data. For this reason it was not possible to make any quantitative 
predictions concerning the spectra prior to their actual measurement. This situation 
has changed in recent years with the appearance of a series of papers dealing with an ab 
initio treatment of the Renner-Teller effect. Although the accuracy of the results 
obtained in this manner is limited by the availability of computational time (there being 
no a priori reason to assume that there is any essential accuracy limitation in the 
methods themselves), we believe that these results constitute a useful contribution to 
the understanding of the spectra of molecules treated. In the second part of this paper a 
simple method for ab initio treatment of the Renner-Teller effect in triatomic molecules, 
elaborated by the present authors, is reviewed. A brief summary of the results obtained 
in our laboratories (Bonn, Wuppertal and Belgrade) by applying this approach is then 
presented in the third and fourth parts of the paper. 

t The Renner-Teller effect appears not only in triatomic, but also in all other molecules 
having a linear equilibrium geometry or passing through a linear conformation during their 
vibrations. The results of studies of the Renner-Teller effect in tetratomic molecules (Petelin and 
Kiselev 1972, Colin et al. 1979, PeriC: et al. 1961) have also been published. 
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2. Method for an ab initio treatment of the Renner-Teller effect 
It is well known that the accuracy of the results obtained by means of an ah initio 

approach is dependent on the amount of computer time available. On the other hand, 
very useful information about a molecular system is not always characterized by a high 
degree of numerical accuracy, but instead carries with it an uncertainty which is 
confined to a reasonable, controlled range which is small enough to aid in securing a 
reliable identification and/or prediction of certain aspects of a given spectrum. Keeping 
in mind the above practical limitations of accuracy as well as the nature of the goal 
which should be achieved, namely to provide a basis for the reliable interpretation of 
the spectral data, a compromise can often be made by neglecting effects which do not 
play a significant role, or more precisely, which even when taken into account would 
not cause a significant improvement in the quality of the final results. 

The electronic spectra of most triatomic molecules consist of relatively long 
bending progressions, and this result implies a need for considering large-amplitude 
vibrations of this type. Since the most prominent transitions occur almost exclusively 
between the lowest stretching vibration levels, these can often be treated more simply in 
the harmonic approximation and separated from other degrees of freedom. The 
coupling between the bending and the stretching vibrations can partly be taken into 
account in an indirect manner, e.g. using the methods proposed by Barrow et al. (1974) 
or Bunker and Landsberg (1977). Neglecting the coupling between the various 
vibrational degrees of freedom (or treating it indirectly ,as described in the above 
references) makes a calculation of the entire three-dimensional potential energy surface 
for the nuclear motion unnecessary, thereby greatly simplifying the overall compu- 
tational problem; instead only three separate potential curves (for the three vibrational 
modes) have to be constructed, and those for stretching vibrations can be constructed 
from a relatively small number of points. Two rotational degrees of freedom, 
corresponding to the two largest moments of inertia, can also be treated separately and 
the third, which at linear geometry becomes the second component of the (degenerate) 
bending vibrations, is considered together with the bending vibration and, in the case of 
the Renner-Teller effect, also with the electronic motion. 

An ah initio treatment of the Renner-Teller effect can be performed in two 
equivalent ways (Buenker 1978, Per2 et al. 1983 a): 

(i) (a) The electronic Schrodinger equation (obtained by neglecting the nuclear 
kinetic energy operator in the molecular hamiltonian) is solved initially for 
both component states using the SCF and CI method. 

(b) The resulting potential energy surfaces (assumed to be non-interacting) are 
employed for the calculation of the vibrational energy levels and wave 
functions. 

(c) The molecular hamiltonian is diagonalized in the composite basis 
consisting of products of the electronic and vibrational wave functions of 
each state (resulting from steps (a) and (b)) calculated in the Born- 
Oppenheimer approximation. 

(ii) (a) The electronic Schrodinger equation is solved in the Born-Oppenheimer 
approximation for both electronic states as in (i). 

(b) The molecular hamiltonian is diagonalized in the basis formed by products 
of linear combinations of the electronic wave functions calculated in the 
Born-Oppenheimer approximation, with the eigenfunctions of a two- 
dimensional harmonic oscillator. 
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2.1. Matrix treatment of the Renner-Teller effect 
The hamiltonian of a triatomic molecule describing the electronic motion, bending 

vibration and the rotations around the axis a with the smallest moment of inertia can be 
written in the form. 

H = TN+ H e  

where p represents the bending coordinate (180"-bond angle) and 4 is the angle 
between the molecular plane and a space-fixed plane defining rotations around the a 
axis. The Ti  functions, whose form depends on the choice of the moving coordinate 
system bound to the molecule and on the internal coordinates employed, are assumed 
to be dependent on p in order to enable a treatment of the large-amplitude bending 
vibrations. For the case in which the stretch-bend interaction is taken into account, 
these coefficients can also vary with the stretching coordinate. In the expression (1) as 
well as in all following formulae atomic units are used. The effect of spin-orbit coupling 
will be neglected entirely in this paper. 

The matrix elements of the hamiltonian (1) in the basis consisting of products of the 
electronic wave functions? Y", Ya and suitable rovibrational species @:, @f have the 
form 

H"i, (Y" @,91Hl yfl @f) 

where 

and the electronic wave functions Y", Ya are assumed to be orthonormal at each 
nuclear geometry. Each of the V, RB and & quantities is in principle a function of all 

t In general a complete set of electronic wave functions should be used, but in the present 
paper attention will be restricted to the use of only two of them: it is assumed that only two 
electronic states couple with each other. A generalization of the Renner-Teller problem to the 
case of several interacting electronic states has been discussed by Koppel et al. (1981). 
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Ab initio treatment of the Renner-Teller efect  89 

vibrational coordinates, but in the calculations presented in this review only the p 
dependence has been given explicit consideration. In addition, the pB and pC terms are 
neglected entirely. 

The rovibrational functions are assumed to be of the form 

@ X P ,  4)=eXP W4)mJ)  (4) 

where K is the total angular momentum quantum number about the a axis 
( K  = ( 1  +_A\)?. Substituting (4) into equation (2) and integrating over the 4 coordinate 
gives (after neglecting the pV, p B  and pC terms): 

This expression, in which gBap and sCap appear instead of their asymptotic values at 
p+O, represents a generalization of the relation normally used in the matrix treatment 
of the Renner-Teller effect (see e.g. equations ( 1  2) and (1 3 )  of Jungen and Merer 1980 a). 
Beginning with equation (5) two different forms of the hamiltonian matrix can be 
derived, depending on the choice of electronic wave functions. 

(i) The real wave functions Y-, Y+ for both component electronic states can be used 
as calculated in the Born-Oppenheimer approximation. In the linear limit (p-+O) these 
functions have the form ' f -  - sin A(8 - 4) and Y + - cos A(8- 4) (or vice versa), where 
8 represents the coordinate conjugate to the electronic angular momentum. Because of 
symmetry considerations B + + = B-  - = 0 and C + - = C- + = 0. Furthermore, in the 
linear limit B -  + = A = - B+ - and C ~ ~ = C' + = -A2. The %g functions in ( 5 )  can be 
conveniently chosen as the solutions of the bending Schrodinger equation within the 
Born-Oppenheimer approximation 

where 

~ : ( p )  = ~ t ( p ) ( ~ " ~ p ) ' ~ t ( ; " ' ~ p )  exp ( -+Ap2) (7) 

represent the solutions of the radial Schrodinger equation of a two-dimensional 
harmonic oscillator. It has been shown (Buenker et al. 1981) that the value of 1 in 

t In all calculations presented in this paper it has been assumed that K is a good quantum 
number. The validity of this approximation, which considerably simplified the calculations (in 
this case the hamiltonian can be diagonalized in a K subspace), has been discussed recently by 
Carter and Handy (1984), who concluded that no significant effects are omitted if K is taken to be 
a good quantum number. 

It has been argued (Jungen and Merer 1980 a, Carter and Handy 1984) that the vibronic levels 
calculated assuming K to be a good quantum number correspond to the value J T O  ( J  being the 
quantum number of the total angular momentum) and that they are in this way hypothetical for 
K#O. However, this problem can be considered in a slightly different way. Taking into 
consideration that a triatomic molecule containing at least one hydrogen atom remains nearly a 
symmetric top ( I z z  = I A < < I x x g  I,, = I B )  during its bending vibrations, its rotational hamiltonian 
can be approximately written in the form H,,,2.3,2/21A+(JZ -3,2)/21,. The first part of this 
hamiltonian, having a singularity at linear geometry, is incorporated into expression (1) .  The 
second part makes a contribution to the total energy of(J2 - K2)/21,. This energy correction can 
be made after diagonalization of the hamiltonian matrix (5)  or (10). 
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90 M .  PeriC et al. 

equation (7) can be chosen arbitrarily, whereby best convergence is obtained with 1 < K. 
If the asymptotic (p-0) form of the electronic wave functions is assumed, equation (7) 
reduces to 

where V- and Y + are the exact wave functions for the lower and upper electronic state, 
calculated in the Born-Oppenheimer approximation. In the linear limit the functions 
Y and Y, become eigenfunctions of a IT, A .. . electronic state 

limY,-expiA(O-4), limy,-exp -iA(O-4) 
P - 0  P - 0  

Substituting (9) into (5) the hamiltonian matrix elements become 

+ T 3 1 ~ K + B + - - ~ 6 C i i + + C - - ) l ) l x R ) 6 a p  

+$(x?l[(V'- V-)+$T,(,C-- - +C+ +)IIx~>(~ - 6 a p )  (10) 
The new basis does not diagonalize the electronic hamiltonian, but it does lead to the 
elimination of the ,$? type (non-diagonal) coupling terms. At the linear limit the matrix 
elements in (10) contain a diagonal term proportional to T3 (Kf A), and the term 
(+C- - -+C+ +) coupling the vibronic species belonging to different electronic states 
vanishes. 

It was shown (PeriC et al. 1983 a, that the choice of basis (i) or (ii) has no significant 
effect on the results of the calculations, as long as the dimension of the basis is 
moderately large compared to the number of energy levels of interest. As expected, in 
the variant (i) the basis with 1> K is not quite satisfactory because the lowest K levels 
need a good admixture of the Rf-" function (proportional to pK-",  see equation (7)) 
and this species is comparatively difficult to represent with terms containing powers of 
p not lower than K.  In another paper (Buenker et al. 1981), it was shown that the 
presence of the singularity- l/p2 in the hamiltonian matrix (5)  did not cause special 
difficulties if the l/p2 matrix elements were constructed by the inversion of the p2 
matrix. However, in spite of the fact that the equivalence between both variances has 
been numerically checked, all concrete calculations presented in this review have been 
performed using approach (ii). 

It is normally assumed that there should be no significance differences in the results 
obtained by replacing equation (5 )  with its approximate counterpart (8) because of the 
fact that the +B and +C terms are multiplied with the function T3 tending to lip2 as 
p+O, so that the contribution to the matrix elements comes predominantly from the 
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Ab initio treatment of the Renner-Teller effect 91 

p-0 limit where $3 and ,+C become +_A and -A2 respectively. However, explicit 
numerical calculations (PeriC et al. 1983 a) have shown that due to the existence of non- 
vanishing second derivatives with respect to p of functions $3 and &C there appear 
some interesting effects as, for example, mass-dependent shifting of vibronic energy 
levels, which limit the accuracy of the potential curves obtained in this way by fitting the 
experimental data. A more detailed discussion of this problem will be given in Part 4 of 
this paper. 

2.2. Treatment of large-amplitude bending vibrations 
An important point in the treatment of the Renner-Teller effect is the choice of the 

form for the nuclear kinetic energy operator. The general form of the hamiltonian 
describing nuclear motion developed by Wilson (Wilson and Howard 1936, Wilson 
et al. 1955) and rearranged by Watson (1968, 1970) has the form: 

where pug1 represent the elements of a matrix which is nearly equal to the instantaneous 
moment of inertia matrix, J ,  and J ,  are the components of the rovibronic angular 
momentum operator along the molecule-fixed axes, P ,  and P ,  are the components of 
the vibrational and L, and L, of the electronic angular momentum: P, are the momenta 
conjugate with the normal coordinates and Vis the potential for nuclear motion. 
According to the method of Wilson and Watson, p,, and Vare expanded about their 
values at equilibrium in a Taylor series in normal coordinates. The zero-order 
hamiltonian is obtained by neglecting P,, L, and all but the leading terms in the 
expressions for pa ,  and I/. The corresponding Schrodinger equation is then separated 
into an equation describing the rotational motion and 3N - 6 mutually independent 
harmonic oscillator equations whose eigenvalues and eigenfunctions are well known. If 
the higher terms in the hamiltonian are taken into account, the interaction between the 
vibrational and rotational motion (Coriolis interaction) and also between various 
vibrational modes cannot be removed and consequently it is not possible to reduce the 
problem in 3N-6 dimension in this manner. This eventually then requires first a 
knowledge of the potential surface in 3N - 6 dimensions, i.e. the electronic Schrodinger 
equation would have to be solved for a great number of different nuclear arrangements. 
Secondly, a solution of a nuclear equation in 3N - 3 dimensions would be needed; in the 
case when the variational method is used that would mean that it would be necessary to 
solve a secular equation of dimension - m 3 N - 3 ,  with m representing the number of 
basis functions for one degree of freedom. Moreover, the transformation of the 
potential (normally calculated as a function of some internal coordinates) into a 
polynomial series in normal coordinates is complicated by the fact that the 
transformation from internal to nuclear coordinates is nonlinear. 

This general approach is especially impractical in the case when a vibrational 
mode ( p )  is characterized with large amplitudes, causing a slow convergence of such a 
Taylor series. In such situations it is much more convenient to use the approach 
developed primarily by Bunker and co-workers (Hougen et al. 1970, Bunker and Stone 
1972, Bunker and Landsberg 1977, Bunker 1975). According to this method the 
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92 M .  PeriC et al. 

coefficients pap and the potential I/ are expanded into Taylor series in 3N-7 
‘infinitesimal’ coordinates Qr, with p-dependent coefficients: 

The zeroth-order hamiltonian is obtained by neglecting all but the leading terms, 
1 

pzf and Vo( p)  + ~ 2 r  &Q,‘ in (1 2): 

where J =  - idlap and ppp is the inverse of the ‘reduced mass’ for large-amplitude 
vibrations. The superscript ‘ref‘ denotes the reference configuration, obtained when all 
the small-amplitude vibrational displacements are zero; this reference configurations is 
a function of p. In the papers cited (Hougen et al. 1970, Bunker and Stone 1972, Bunker 
and Landsberg 1977) are given explicit expressions for pref and ppp as functions of p. 
The contribution of higher terms in small-amplitude (stretching) vibrations as well as 
the coupling between bending and stretching vibrations can be taken into account 
perturbationally. 

Several forms of the kinetic-energy operator suitable for a treatment of large- 
amplitude bending vibrations have been published. The differences between them are 
consequences of slightly different ways in which the moving coordinate system is bound 
to the molecule. Three of them have been used in the ab initio calculations presented in 
this paper: (i) the H(O) and hamiltonians for AB, molecules by Barrow et al. (1974). 
These authors adjusted the general expression derived by Freed and Lombardi (1966) 
for the case when the molecule-fixed axes are the principal inertial axes, so that the 
effective hamiltonians H(O) and H(’) include large-amplitude bending vibrations and 
the rotations about the a-axis, and the second of them the leading part of the stretch- 
bend interaction as well; (ii) the rigid-bender hamiltonian derived by Hougen et al. 
(1970), using a reference configuration defined so that the coupling between bending 
and other vibrational modes is minimal. This form of the bending hamiltonian differs 
only in some higher terms from H ( 2 )  of Barrow et al. (1974); (iii) the semi-rigid-bender 
hamiltonian of Bunker and Landsberg (1977), which approximately includes the 
coupling between stretching and bending vibrations through the dependence of the 
bond lengths on the bending coordinate. 

Since the bending vibrations and the rotations about the a-axis have to be 
considered simultaneously, the most suitable choice of coordinates is polar coordinates 
with p for bending and Cp for the phase angle of the molecular plane with respect to a 
space-fixed plane. Because of the fact that the corresponding volume element of 
integration is in this case p dp d 4 ,  it was necessary to adjust the hamiltonian given in 
original references with the help of the transformation 

H = S - ’ H S  (14) 

where S=(p / s i r~p)”~  in the case of the operator published by Barrow et al. (1974) and 
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Ab initio treatment of the Renner-Teller efSect 93 

S = p'" in other cases (Hougen et al. 1972, Bunker and Landsberg 1977). After this step 
all such hamiltonians assume the form: 

with the coefficients T ( p )  given explicitly elsewhere (PeriC et al. 1982, 1983 a, PeriC and 
Krmar 1982). At p-+O all three hamiltonians reduce to that of a two-dimensional 
harmonic oscillator: 

with p = mMr2/2(M + 2m) for AB, and 

for ABC molecules. 

2.3. Calculation of matrix elements 
By the calculation of the matrix elements (5) or (10) appearing in the vibronic 

secular equation, the potential and the kinetic energy terms are written in the form 

(18) p = l k  2 p 2 +v*, T=T,+T' 

where k represents a suitably chosen parameter. To + 1/2kp2 = H ,  is the hamiltonian of 
a hypothetical two-dimensional harmonic oscillator whose eigenfunctions are used to 
form the basis for diagonalization of the hamiltonian; it contributes to the secular 
matrix via the diagonal terms (u+ 1) ( k / p ) 1 / 2 .  It has been shown (PeriC et al. 1979 b) that 
the 'force constant' k determining the form of the basis functions can be chosen 
arbitrarily over a rather wide range without any significant effect on the final results. 
The potentials V k  are represented by polynomials in p2", obtained by fitting the 
calculated electronic energies with the help of the least-squares procedure. The 
contribution of the part T' of the kinetic energy operator is accounted for by expanding 
the coefficients Ti = T-(To)i into Maclaurin series in p and using the recursive 
formulas (PeriC 1980): 

+ [(u + l)(u - l)(u + 1 - 2)(u- 1 - 2)]1/2Rt_, 

- ( 2 ~ +  l ) p 2 R f , + 2 [ ( ~ + l ) ( ~ - l ) ] " Z p 2 R ~ - 2 + ~ 4 R ~  (19) 
so that the calculation of the matrix elements of T' also reduces to the evaluation of the 
matrix elements of p2". The same concerns the calculation of the matrix elements 
corresponding to the +B and +C terms, which are expanded in p2" series (for the case 
when they are not approximated by the asymptotic values). 

The matrices of p2" can be calculated in principle beginning with the p 2  matrix by 
matrix multiplication (Peric et al. 1979 b). However, due to the fact that the basis used is 
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94 M. Perit et al. 

of finite size, the matrix for each higher degree of p calculated in this manner is less 
accurate, i.e. has a smaller number of exactly calculated elements. For this reason it is 
more convenient to calculate the higher-order matrices using the recursion formula 

p2R;=(v + 1 ) R i - g ~ ~  - 12)1'2R;-2 -+[(v + 1 + 2 ) ( ~  - 1 + 2)]"2RL+2 (20) 
or, if matrix multiplication is employed, to begin with the p2 matrix calculated in a large 
basis and to 'contract' each matrix of higher order by dropping the last row and column 
in which these inaccurately calculated elements appear. 

The radial parts of the eigenfunctions of the two-dimensional harmonic oscillator, 
Ri with the same 1 are orthonormal: (RLl R;,) = huu,. However, the radial functions with 
different 1 values are in general non-orthonogonalt. For calculation of some 
non-diagonal matrix elements proportional to (rl: - T';) in the case when the p- 
dependence of the bond lengths and consequently of the Ti terms is different in the two 
electronic states, it is necessary to know the form of the overlap matrix (RklRL.). For l3- 
electronic states (A = 1, 1 = K + 1, 1'= K - 1 = 1 - 2) (Perib et al. 1983 a): 

(RLlRL)= -[(~-l')/"+l)]''~ 

V'+l' v-1 

v / - r  v + l  ' 
(RLIRL) =gl+l') 

(R;~R:,)=O, if v'>u 

For A electronic states (A = 2, 1 = K + 2, 1' = K - 2 = 1-4) (Perii. et al. 1984 a): 

v - l ' v+ l '  
-1-1 

(RiIRL.)=i(l+l')[(l'+ 1)(~-\+2)-(1- I)(v'-l')] 

( R;IR;.) = 0, if v' > v 

A systematic analysis of the effect of various parameters (choice of k,  number of 
expansion terms in Vand T' series, size of the basis) on the calculated vibronic energy 
levels and a comparison \;;ith other methods for the treatment of the Renner-Teller 
effect (especially with these employing numerical solutions of the Schrodinger equation 
(Jungen and Merer 1980 a, Duxbury and Dixon 1981) has been reported by Per% et al. 
1983 a. It was shown that the agreement .between the results obtained with the very 
simple approach described above and those of the other methods is excellent. For 
example in NH, the largest discrepancies over a wide range of v 2  and K quantum 

t In spite of that, the basis in which the hamfitonian is diagonalized is orthonormal because of 
the presence of angular factors exp(ilq5). 
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Ab initio treatment of the Renner-Teller effect 95 

numbers (vibronic energy values from &30000cm-') are only a few cm-l, i.e. of the 
same order of magnitude as those between various numerical integration methods 
themselves. 

Some comments concerning the use of the polynomials for the representation of the 
potentials should be made. The main question is, which order of a polynomial should 
be chosen for the fitting of calculated electronic energy values? A numerical analysis of 
this problem is presented by PeriC et al. (1979b, 1983a). We repeat here only the 
conclusions. If the number of calculated points is small (say seven) and if they span a 
relatively wide range of the vibrational coordinate values (as is usually the case) there 
are two quite different possibilities, neither one of them being quite satisfactory: if the 
order of the polynomial is small (say second or third) the least square will be large (bad 
fitting); on the other hand a polynomial of fifth or sixth order would produce a very 
good fitting of the calculated points but could cause an unreliable interpolation in the 
regions between the expliaitly calculated points. According to our experience an 
optimal method, especially for representation of complicated bending curves, consists 
in calculating a number of supplementary points with the help of the spline procedure 
(PeriC et al. 1979 a) and only after that in fitting all the points (the number of them being 
generally 50-100) with polynomials of relatively high order (say 20th). These 
polynomials arc flexible enough to ensure a very good fit (see PeriC et al. 1983 a) and 
furthermore the large number of the fitted points prevents them from producing any 
unrealistic behaviour between points. 

Finally, there arc cases in which neither the polynomial representation of the 
potential and the kinetic energy terms, nor the use of the eigenfunctions of the two- 
dimensional oscillator as basis functions are convenient; sometimes it is necessary to 
consider the whole range of the values of the bending coordinate ((b-180"). If in this case 
the variation of the inter-nuclear distances with a change in the bending coordinate is 
assumed, the potential remains finite for all values of p and cannot be well described 
with a polynomial series in p. In such (and other) cases one can use Fourier series for 
representing the various terms in the hamiltonian, and of course also for the vibrational 
functions themselves (PeriC et al. 1983 c). 

2.4. Calculation of transition probabilities 
A problem which deserves special attention is the calculation of transition 

probabilities between vibronic levels. The probability for the transition between two 
states is proportional to the square for the corresponding transition moment 

where is the electronic transition moment if e' fe" and the dipole moment 
otherwise. However, in the case of the Renner-Teller effect the vibrational levels cannot 
(except for K=O) be exactly attributed to one particular electronic state and in a 
rigorous treatment? the expression for the vibronic transition moment contains both 
the dipole and electronic transition moment. 

t However, for most vibronic levels, and precisely for all those not lying in the vicinity of the 
top of the barrier to linearity where there exists a strong coupling of the two electronic states, it is 
possible to make a correspondence to a particular potential surface to a good approximation. 
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Vuviance (i) 
For the case in which the electronic parts of the basis functions are the component 

states calculated in the Born-Oppenheimer approximation, the total vibronic wave 
functions for the states n and m are given by 

where it is assumed that the same basis (i.e. the same 1 value) is used for calculation of 
both n and m rovibronic levels and the corresponding electronic wave functions Y - 
and Y + represent the real functions tending to sin (0- 4) and cos (0- 4) respectively as 
p+O. The transition moment vector is given by 

I. I. n 

Rnm- l J Y : X Y m d z  + J  Y : Y  Y m d z +  K Y , * Z Y m d t  = IRzm+ JR,Y,+ KRim (25) 

In this equation X ,  Yand Z represent the axes of space-fixed system and I, J and K 
the corresponding unit vectors. Substituting the wave functions (24) into (25) one 
obtains. 

J J 

+I1 ck c;~, J RJRI.( J Y + X Y  dre)p dp  
v v' 

and similarly for Rim and R:m. Assuming that the Z axis always coincides with the axis 
of the smallest moment of inertia?, z = a the transformation from the space-fixed axis 
system into the molecular frame x, y, z becomes 

X = x cos 4 - y  sin 4 =&x( exp i4 +exp( -i4)} + iy(exp i$ -exp ( -  $)}I 
Y= x sin 4 + y cos 4 = +[ix( exp (- @) - exp i4} + y(exp i$ + exp ( -  i4)} 

Z=z 

with $ being the angle between the molecular plane (yz) and the space-fixed YZ plane. 
It is convenient to make this transformation because the dipole moments and the 
electronic transition moment are calculated in the molecule-fixed frame. In C, 
symmetry (ABC molecules) one of the component electronic states belongs to the A' 
and the other to the A" irreducible representation. Since the x-coordinate transforms as 

t We are interested at present only in rotations about the axis corresponding to the smallest 
moment of inertia. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
2
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Ab initio treatment of the Renner-Teller effect 97 

A" and y and z as A' it follows that the non-vanishing components of the dipole and 
electronic transition moments are 

YTyYT dz,, Y"zY'dz,, Y'xY" dz, (28) I s s 
the first and third including perpendicular (K' - K = +_ l), the second one parallel 
( K ' = K )  transitions. In C,, symmetry, one of the electronic states belongs to A ,  and 
the other to B ,  symmetry (for ll states) and x, y and z coordinates to B,, A ,  and 
B ,  respectively. The non-vanishing electronic matrix elements are in this case 

[Y'y'PT dz ,  and 

Y'"xY'dz,  s 
both of them giving perpendicular transitions. Inserting (27) and (26) one obtains for 
R,, an expression involving sums of matrix elements of the dipole and transition 
moment functions in the Rk basis. 

Variance (ii) 
For the case in which the electronic part of the basis consists of linear combinations 

of the electronic wave functions calculated in the Born-Oppenheimer approximation, 
the corresponding vibronic functions n and m are: 

y,=2-112(y'+ + iy-) exp(iK$)x c:"-' R f "  + 2-1/2(Y"+ - iw-) 
u 

Inserting these functions into equation (25) and proceeding in the same way as in the 
variant (i) one again obtains for the transition moment a sum of matrix elements 
involving both the dipole and the electronic transition moments, but now in a basis 
consisting of the Rf, functions with various 1 values ( K  f A, K' f A). 

For a comparison with experimental data it is desirable to know quantitatively how 
much a vibronic level belongs to a particular Born-Oppenheimer surface. In the 
variation (i) this is a trivial problem; one needs only to find the sums of squares of the 
coefficients cn; or c;. If the linear basis is used (variation (ii)) the projection of the 
vibronic functions (equation 30) on a, particular Born-Oppenheimer electronic state 
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98 M .  PeriC et al. 

has to be made. For the percentage of appearance of the vibronic level n to the 
electronic state -t and - one gets 

where +, -signs in the last term correspond to the upper and the lower electronic state 
respectively. 

2.5. Calculation of the potential surfaces 
The potential surfaces for nuclear motion, representing the electronic energy 

calculated in the Born-Oppenheimer approximation have been obtained employing 
the MRD-CI method developed by Buenker and Peyerimhoff (Buenker and Peyerim- 
hoff 1974b, 1975, Buenker et al. 1978, Buenker 1980, 1982). A calculation of the 
electronic energy starts with the solution of the Hartree-Fock equations according to 
the Roothaan scheme (LCAO-MO method, Roothaan 1951, 1960, Huzinaga 1960, 
1961). The SCF dalculations have usually been performed for one electronic state only; 
this approach is motivated by the facts that the SCF calculations serve only to generate 
the molecular orbitals which are than employed for construction of the Slater 
determinants representing a basis for the CI calculations, and that the final results in 
most cases hardly depend on the choice of the MO basis at the CI level employed in this 
work. On the other hand, the use of the same MO set for both electronic states has the 
advantage that the calculation of the electronic transition moment between them is 
simpler than when a separate MO basis is employed for each electronic state, because of 
the non-orthogonality of the MOs obtained in the SCF calculations of dfferent 
electronic states. The A 0  basis employed in the SCF calculations is generally of 
double-zeta quality with additional d- and sometimes f-functions centred on the heavy 
atoms and p-type bond functions. 

A detailed description of the MRD-CI method is given in the above references; we 
present here only a brief summary. To begin with, a core of the MOs with lowest orbital 
energies (corresponding usually to the inner shells of the heavy atom) is designated and 
these orbitals are kept doubly occupied in all configurations. In addition, some of the 
MOs with highest orbital energies can be entirely excluded from further consideration. 
All other MOs are in principle allowed variable occupation. An important point in an 
MRD-CI calculation is the choice of the reference configurations, i.e. those configur- 
ations which appear with relatively large coefficients in the final electronic function (say 
ca > 0.005). The choice of these quantities is based on prior knowledge of the system 
studied, on experience with similar species and finally on specific test calculations. 
Having chosen the reference configuration whose number is normally between 1 and 10 
but sometimes also larger (up to 80), one generates the configuration basis by single and 
double excitations with respect to them. All the generated configurations are tested 
according to an energy-lowering criterion; those whose addition to the set of reference 
configurations causes a lowering in energy of the eigenvalues of the corresponding 
secular equation larger than a chosen threshold value T (a characteristic value for T is 
10 pH) are included in the final secular equation. The number of selected configurations 
is usually in the order of 2000-10 000. A perturbation procedure enables an estimate of 
the CI energy corresponding to the value T=O. The effect of still higher excitations is 
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taken into account by means of an extension of the perturbation formula (Langhoff and 
Davidson 1974): 

AE= ( l - x ~ ?  )( E,,,-E (32) 

The energy obtained if AE is added to the extrapolated MRD-CI value is referred to as 
the (estimated) full CI energy. All energy values presented in this paper correspond to 
that full CI limit. (It should also be noted that in the SCF and CI calculations the spatial 
and spin symmetry are used to reduce the dimensions of the secular equations to be 
solved.) 

3. Summary of calculated results and discussion 
In this section a review of the results of ab initio investigations of the Renner-Teller 

effect in triatomic molecules is presented. Calculations are primarily for dihydrides 
whose heavy atoms belong to one of the first two rows of the Periodic Table. The list of 
the molecules treated and their electronic configurations in the states exhibiting the 
Renner-Teller effect are given in table 1. These states represent generally the lowest 
electronic species of the corresponding molecule, exceptions being C ,  with a 'C; 
ground state and CH, and NH: with triplet states of lower energy. In table 2 are 
presented the calculated values for molecular constants together with some of the 
treatment details ( A 0  basis, size of the CI secular equation). In figure 1 are shown the 
calculated potential curves for all dihydrides treated. 

Before discussing the results, some comments should be made about the effect of the 
A 0  basis on the accuracy of the computations. The calculations are generally 
performed with bases including d-functions on heavier atoms and s- and p-polarization 
functions located in the middle of the bonds. Only in two cases (BH,, NH,) is the A 0  
basis augmented withf-functions. A comparison of the results of the SCF and CI 
calculations shows that the potential barriers towards linearity and the T,  values are 
generally lower if calculated on the CI than on the SCF level of treatment, as a 
consequence of a poorer description of the higher states by the SCF method, and of the 
more effective description of electron correlation at linear geometry. There is a 
tendency for thef-functions to be somewhat more effective at very large angles so that 
the barrier to linearity is reduced by basis extension as well. However, it is improbable 
that further augmentation of the basis with still higher spherical harmonics would lead 
to a significant change in the computed results. 

The disagreement between the calculated and experimentally dqduced equilibrium 
distances is generally of the order of 0.01 A. It should be noted that the equilibrium 
distances are not directly measured in experiments, and that in some cases a 
comparable large disagreement between the results obtained by various experimental 
studies exists. The agreement between the calculated and experimentally derived values 
for the equilibrium bond angle is in most cases better than 1". In the theoretical studies 
under discussion relatively little attention has been paid to the determination of 
equilibrium geometries. The potential curves are generally calculated by varying the 
bending coordinates in intervals of 20" between 180" and 40-80", while for the 
stretching curves a typical increment for the bond lengths is 0.2 Bohr radius. All the 
calculated equilibrium distances and angles given in table 2 correspond to minima of 
the potential curves and for this reason they can be somewhat different from the values 
derived experimentally, since the latter represent average values for the lowest 
vibrational states. 
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Table 1. Molecules and configurations of their states discussed in the present work. 

No. 
Molecule electrons State Electronic configurations 

2Bl ... (lb,) 

AIH, 

SiHl 

CHZ 

NH: 

SiH, 

PH; 

2 A‘ 
,A,, 

HNO’ 25 ’ll 
. . . (6a’)2(Ia’’)’(7a’) 

. . . (6a’)2(la”)’(2a”) 

‘A,, 

2 A  
HNF 17 2n 

. ( 6 ~ ’ ) ~ (  la”)2(7a’)z(2a’‘) 

. (6a’)2(la”)2(7a’)(2a”)2 
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Table 2 (b). Computational details of the various calculations. 

Molecule State A 0  basis 

Order of 
No. of No. of sec. equ. 

reference generated solved at 
config. config. threshold T 

X 'A, 

2Bl 

l- 4 1  

'A1 
IBl 

X 'B1 

2Al 

X 'A, 
2Bl 

2Bl 
X 'A, 

X 'B, 
2Al 

,A1 
X 2Bl 

X 'A' 

Z A t t  

X Z A  
ZA, 

lBl 

'A1 

(1) 38 gaussians; a:=0.6 
POI: ~,=1.3,  aP=0.5 

(2) +a:= 1.0 

55; CI' = 0.034, ~ 2 ,  = 0.60, 
at2 = 0.06 

pol: a,,= 1.5, ~ , , = 0 ~ 1 0  
up, = 0.1 5 up, = 1.2, 

52; a!, = 1.8846, =Om32 
pol: a,, = 1.8, aS2=O.14 

C I ~ ,  = 1.5, ap2 =0.18 

(1) 52; c$,=1.8846, ~$,=0.5582 
pol: a,,= 1.8, c~,,=O~14 

ap,=15, ap,=O~18 

(2) 72; + K: = 2.5, ar", = 1.0 

44  CI:, = 0.85, asi dz - - 0.30 
pol: = 0.736, 

$.i - pR, - 0014 

48; a:, = O m ,  = 0.30 
pol: ~(,=0.14, ap=0.18 

46; a:, = 054, = 0.06 
pol: a, = 0.8 

36; 
pol: a, = 1.45; a, = 0.85 

ad = 0.63 (N-0); 
a,= 1.0 (H-N) 

~$=0.95, C I ~ =  1.62 

36; 
pol: CI, = 1.25, ap = 0.7 

7 
5 

2 

1 

8 
1 

(7) 

1 

1 

1 
1 

1 

1 

1 
1 

1 
1 

1 

1 

2 
2 

8 

9 

46250 
32000 

10000- 

17000 

20000 
5500 
(31900 

(1)9715 
(2)31711 

(1)8925 
(2)30145 

1733 
1565 

2458 

2230 

6000 

3281 
3069 

30000 

2200 
(T= 5 pH) 

1300- 

2600 

1870-3180 
1400-2200 
17420-2 100) 

2284-3 357 
3200-3800 

2333-3230 
3200 - 3800 

420-780 

70&900 

800-1000 

2000 

1063 
1003 
(T= 20 pH) 

(T= 20 pH) 

3400-5400 
(T= 10pH) 
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106 M .  PeriC et al. 

$he calculated values for the stretching vibrational frequencies generally over- 
estimate those derived on the basis of recorded spectra, the largest deviations being in 
the order of about 10%. These relatively large discrepancies are expected because the 
number of points determining the stretching curves is small in all cases; these curves are 
calculated at a particular value of the bending coordinate, in principle, that which is 
optimal for the equilibrium value of the stretching coordinate but not for other values, 
with the consequence that the resulting curves are expected to be somewhat too steep. 
The zeroth-order kinetic energy part of the stretching hamiltonian is used. Except for 
the ground state of CH, the agreement between calculated and experimentally 
obtained values for the bending frequency is considerably better; this result can be 
attributed to (i) a more detailed description of the bending potential curves (normally 
with 5-15 points), often including an optimization of the bond lengths at various values 
of the bending coordinate as well, and (ii) the use of kinetic energy operators suitable for 
a treatment of large-amplitude bending vibrations and enabling an (at least approxi- 
mate) incorporation of the stretch-bend coupling. Since there is some confusion in the 
literature about the definition of the zero-bending frequency, we indicate in table 2 the 
way in which the theoretical values presented are calculated (so e.g. (3-1)/2 means the 
energy difference between the v2 = 3 and v, = 1 levels divided by two). 

Of all the quantities whose values are compared in table 2, the energy difference 
between the lowest-lying vibrational levels of the two electronic states (Too) is the only 
one which can be directly measured by experiment, and the discrepancy between the 
experimental and theoretical results for it is most probably caused by errors in the 
calculations. However, in many cases the experimental value for Too is not really 
measured but rather estimated with the help of an extrapolation procedure (see 
94, BH,); in such cases it is also possible that the determination of Too is connected with 
an incorrect assignment of vibrational numbers in an observed progression. The 
agreement between theoretical and experimental results for Too given in table 2 is in all 
cases better than 0.05 eV and still better in the case of the very extensive calculation for 
NH, (with a large basis including alsofifunctions on the N atom). All theoretical results 
presented in table 2 correspond to transitions to the lowest C (K' = 0) vibronic level of 
the upper electronic state from the lowest vibronic level of the lower state from which 
the transitions to the C levels are allowed (0; = 0, K" = 1). 

A rather systematic set of calculations for dihydrides AH, with the central atom A 
belonging to the first and second rows of the Periodic Table allows some general trends 
to be discovered concerning the equilibrium geometry and form of the potential 
surfaces of these species. In figure 2 are presented the heights of the barriers to linearity 
and the equilibrium angles for the states correlating at linear geometry with orbitally 
degenerage II and A states of the dihydrides considered. The data for molecules whose 
central atoms belong to the same row are connected with lines. Isovalent species are 
presented along vertical directions. It is obvious that the bond angle is smaller (the 
molecule is more bent) and the barrier towards linearity larger if the central atom 
belongs to the second row. Neutral species have larger barriers and smaller bond angles 
than the corresponding isovalent ions. Comparing the results for a particular row one 
finds that the bond angle has the largest value if the central atom A lies in the third 
group of the Periodic Table, with similar values for the fourth and the fifth groups. The 
height of the potential barrier for the lower curve becomes larger in going from the third 
to the fifth group with the increase being much more pronounced between the third and 
the fourth than between the fourth and the fifth groups. In the upper state the barrier 
towards linearity is considerably higher for those species whose central atom belongs to 
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d ( O )  

60- 

80 

Et,&m-? 

20000 

10000 
I 

- 

- upper state 
--- -- lower state 

Figure 2. Calculated heights of the barrier towards linearity (left) and equilibrium bond angles 
(right) for dihydrides treated in the present study. Isovalent species are presented along 
vertical directions. Species whose central atoms succeed one another (lie in the same row) 
in the Periodic Table are connected with full (upper states) and dashed (lower states) lines. 

the fourth group than when A is in the third group; on the other hand, the barrier height 
decreases somewhat in going from the fourth to the fifth group. 

The relative ordering of the component states by bent geometries for a group 
of isovalent species is consistent with Walsh's rules (Walsh 1953, Buenker and 
Peyerimhoff 1974a), e.g. the 'A, state of BH, is expected to have a bent geometry 
because it has an electron in the 3a, orbital, strongly stabilized upon bending, and the 
'B, state, arising from an excitation to the lb ,  orbital, whose energy remains 
practically unchanged by bending, should have a large bond angle and is actually 
linear. For the same reasons it is expected that the lower component of the 'Ag state of 
CH, should be IA1, because the corresponding electronic configuration has two 
electrons in the 3a, orbital, while in the other state ('BJ there is only one such electron. 

The accuracy of the calculated data collected in table 2 can be tested more or less 
directly by comparing with experiment. The situation concerning the form of the entire 
potential curves is different, however. The potential curves derived by fitting 
procedures based on known experimental data are published in some instances, but a 
disagreement between these results and the potential curves calculated by means of an 
ab initio technique does not necessarily mean that the latter are in error. The reason for 
this is that in the determination of the potential curves from experimentally measured 
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108 M .  PeriC et al. 

band positions different assumptions (and approximations) can usually be made, with 
the result that several distinct potential curves can be derived on the basis of the same 
set of experimental data (see discussion in 5 4). Nevertheless, generally good agreement 
between 'experimental' and theoretical potential curves is noted (figures 7 and 11). 
However, there seem to be systematic distinctions for highly bent arrangements: 
ab initio curves increase in this region more rapidly. There are several reasons that 
might be responsible for this effect. As already stated, this result could (but not very 
probably) be a consequence of the shortcomings of the A 0  basis employed in the 
calculations. A much more plausible explanation is that the form of the hamiltonian 
employed in the fitting of experimental data is too approximate for this geometrical 
region. It is clear that the interaction between bending and stretching modes must play 
a very important role, for example, if a molecule undergoes large-amplitude bending 
vibrations. Effective bending hamiltonians have been derived and employed involving 
(indirectly) the coupling between stretching and bending vibrations, but the question 
remains if any single one-dimensional hamiltonian is capable of accurately including 
the coupling between different degrees of freedom. Another fact hampering the 
construction of adequate Born-Oppenheimer potential surfaces in systems such as 
NH,, PH,, SH: etc. is the presence of a third electronic state (,B2) undergoing an 
avoided crossing (conical intersection) with the ,A, surface at smaller bond angles. 
Because of the fact that in C ,  symmetry (i.e. after asymmetric stretching distortion) both 
these states belong to the same (A') irreducible representation and consequently the 
corresponding potential curves no longer cross, the shape of both must be strongly 
perturbed. 

The above points are illustrated in figure 3 in which the calculated term values for 
the state of NH, (PeriC et al. 1983 a) are compared with those derived on the basis 
of experimentally obtained spectra (Jungen et al. 1980a). A gradual change of the 
rotational K-type structure (below the barrier at 1 SO0) into that characteristic of a two- 
dimensional oscillator (above the barrier), accompanied with the appearance of a 
minimum in the difference between successive term values for a particular K-value, can 
be noted. Since the calculation errors for the vibrational levels is generally of the order 
of 100 wave numbers (and at high t~; values still larger), it is clear that the ab initio 
calculations do not allow for a satisfactory description of local perturbations between 
neighbouring levels of the lower and upper potential surface. This is clearly seen in the 
energy range in the vicinity of the barrier where some irregularities in the observed 
spectrum are apparent which are caused by splitting of levels which would lie close to 
each other in the absence of the perturbation; such details are not reproduced properly 
in ab initio calculations because of the shifting of energy levels corresponding to the 
lower curve towards higher energies (see also figure 10). 

4. Individual molecules 
BH, 

Since the BH, radical, having only seven electrons, represents the smallest 
polyatomic molecule for which the Renner-Teller effect has yet been observed, ab initio 
results should be most reliable for this species and hence very good agreement between 
measured and calculated data could be expected. The value of Too for transition 
between the two lowest-lying electronic states of BH, (correlating with a 'TIu state at 
linear geometry) reported by Herzberg and Johns (1967) as 4194 cm- ', appeared, 
however, to contradict the results of early ab initio studies (Bender and Schaefer 1971, 
2260 cm-l,  Staemmler and Jungen 1972, 3053 cm ~ '). 
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110 M .  PeriC et al. 

The calculated structural data agree to within 0.002 and 2" with experimentally 
determined bond distances and angles and the discrepancies between the computed 
and experimentally obtained bending frequencies are smaller than 30 cm- '. For the 
energy difference between the minima of the both potential surfaces ( K ) ,  a value of 
3024cm-' has been obtained in the calculations with the A 0  basis without the 
f-functions; the presence of the latter has as a consequence of lowering the T,  value by 
roughly 350cm-' (T ,  =2675 cm-'). Both results are in good agreement with those 
reported in earlier ab initio studies. Therefore, in seeking the cause of the apparent 
discrepancy between theoretical and experimental results, critical analysis of the 
interpretation of the experimental data seemed to be in order. 

Herzberg and Johns (1967) observed three pairs of bands which were attributed to 
the bending progressions in "BH, (11767.3 (C); 12690.3 (n); 13640.6 (C)cm-') and 
"BH, (11829 (Z), 12760 (n); 13717 (Z)cm-'). The authors plotted the isotope shifts 
between the corresponding bands against the wave number of the "BH, species. Since 
these three points did not lie on a straight line, the slope was not determined but 
calculated using the ratio of the reduced masses for the bending vibrations in "BH, 
and "BH,, assuming linear molecular geometry and neglecting the effect on 
anharmonicity on the values of the reduced masses. It was found that the slope should 
be 0.0077. A line of this slope which best fitted the observed points indicated that the 
origin of the band system should be about 4500 cm- '. Taking this value into account, 
Herzberg and Johns fitted the observed bands in IIBH, (11767.3; 13640.6; 
15505.9 cm-') with the formula 

G(u~)=u~(u ,  + 1 ) + ~ 2 2 ( ~ 2  + + To, (33) 
and found the values: o2=954.65cm-', x2,= - l.Ocm-' and ToO=4194.1 cm-l, 
corresponding to the numbering of the observed bands D, = 7,9,11. It should be noted 
that the value Too corresponds to G(D; = - l), i.e. Too represents the difference between 
the zeroth vibrational level of the lower electronic state and the minimum of the upper 
potential surface (assuming it to be harmonic in the vicinity of the equilibrium 
geometry)?. 

The lowest measured rC vibronic level in the upper state, corresponding to u; = 1, 
should, according to formula (33) lie at 6099-4 cm-'. Herzberg and Johns found on the 
basis of the observed deuterium isotope shifts that such a numbering of the bands 
necessarily implies substantially larger frequencies for the stretching vibrations in the 
upper than in the lower electronic state. 

Both the above conclusions, (i) E,; = o-tv;  = = 6099.4 cm- and (ii), an unusually 
large increase of the stretching frequencies in the upper state, are in clear disagreement 
with the results of the ab initio study (PeriC et al. 1981). The best result for E,;=o,,;=l, 
obtained by employing the potential surfaces calculated with the A 0  basis including 
f-functions (PeriC and Krmar 1982) is 4141 cm- '; very similar values for the stretching 
frequencies of both electronic states have been found. Since it is very unlikely that the 
calculation error for such a small molecule could be so large (-03 eV in electronic 
energy) the interpretation of the experimental results must be questioned. The key 
point in this analysis is the determination of the To, value. Herzberg and Johns 
performed the extrapolation to To, using a line with a slope determined by the ratio of 

?In Herzberg's monograph (1966) a value is given for T0-5150 (-4194+955)cm-', 
representing the energy difference between the zeroth vibrational level of the lower electronic 
state and the hypothetical u; = 0 level of the upper state; see figure 4. 
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I 

180 160 140 120 100 0 HBH 

111 

Figure 4. Ab initio potential surfaces for the bending vibrations in BH, (Perit et al. 1981). 
Calculated K =O and K = 1 vibronic levels are shown. The energy differences correspond- 
ing to the Too value as defined by Herzberg and Johns (1967) and to To used by Herzberg 
(1966) are indicated. 

the reduced masses for linear geometry, assuming implicitly in this way that the 
vibrations also remain harmonic in highly excited bending states. However, it has been 
shown (PeriC et al. 1981) that this assumption is not realistic, and that an appreciably 
lower value for Too (2280.8 cm-') is obtained if the large-amplitude bending vibrations 
are taken into account. This circumstance would lead to a renumbering of the observed 
bands (v2 = 9,11,13 instead of 7,9,1 l)?, according to which all apparent discrepancies 
between the experimental results and the ab initio calculations disappear: the first Z 
ilevel in the upper electronic state according to the formula (33) with the new numbering 
should lie at 4194 cm- (ab initio 4141 cm-l, see figure 5) and the stretching frequencies 
in both electronic states should have similar values in accordance with theoretical 
predictions. 

f It should be noted that Staemmler and Jungen (1972) also questioned the numbering of 
observed bands proposed by Herzberg and Johns, but they did not offer a detailed explanation of 
the matter. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
2
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



112 M .  PeriC et al. 

exp. calc. exp, calc. exp. calc. exp. calc. 

- _ - _  - - - _ _  - 13 

14 000 

4 000 

2 000 

0 

K - 0  1 2 3 

Figure 5. Calculated and experimentally derived vibronic structre of the ’nu electronic state of 
BH,. Calculations are performed employing an A 0  basis withf-functions. Dashed lines 
correspond to the levels belonging predominantly to the lower electronic state ( X  ’A,), 
solid lines to those of the upper state (’B,), dash-dot lines denote the positions ofthe bands 
not directly observed but calculated from equation (33). Observed bands are renumbered 
as proposed by Perii. et d. (1981). 

AlH, 
The only experimental information concerning the spectrum of AlH, are those 

given by Herzberg (1966). The results of ab initio calculations performed with a rather 
small A 0  basis (without f -  and other polarization functions) (Nestmann and Perik 
1984) agree well with these data. Further, other molecular constants, not available 
experimentally, as well as the positions of vibration-rotational levels and the intensity 
distributions in band progressions have been calculated. 

CH, 
To our knowledge the first ab initio treatment of the Renner-Teller effect in a A 

electronic state has been performed for the CH, molecule (Perik et al. 1984a). The 
results (figure 6) are in reasonably good agreement with the corresponding experimen- 
tally obtained data (Duxbury 1982, Ashfold et al. 1982). 

NHZ 
NH: represents one of the free radicals which is interesting from an astrophysical 

point of view. Ab initio calculations are in this case especially desirable because ofthe 
absence of any experimental information concerning its spectrum. It has been found 
(Peyerimhoff and Buenker 1979a) that the spectrum of NH: should be very 
complicated because of the existence of a number of electronic states in a relatively 
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1------- - 

I 
'xp 'Ag A, 'B1 

---- .___ 
.% 

- - -I - 0 r z 7  
- ........... - 

........... 

~ ~- 
1 

?xp 'As A, '13, 

........... - 
.-.- - 

-, _ ............ ........... 
a 

-- 
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Figure 6. Comparison ofthe calculated vibronic energy schema in the 'Ag state of CH, (Perik et 
al. 1984a) with those obtained on the basis of experimental results (Duxbury 1982). 
Dashed lines indicate the levels belonging predominantly to the lower Born-Oppenheimer 
electronic state, solid lines the levels corresponding to the upper state. The levels 
appreciably shared by both electronic states are denoted with dotted lines. Right: 
vibrational levels of the component electronic states obtained by neglecting the Renner- 
Teller coupling. 

narrow energy region, including various interactions between these states (avoided 
crossings, Renner-Teller effect etc.). The Renner-Teller effect in the lowest singlet state 
'Ag has been studied by PeriL et al. (1984 b). It was found that in the 'B, upper state the 
barrier toward linearity was only 220cm-', so that in the upper state all vibrational 
levels lie above the barrier. 

NH, 
NH, is probably the most frequently studied molecule exhibiting the Renner-Teller 

effect (e.g. Ramsay 1956, Dressler and Ramsay 1957,1959, Pople and Longuet-Higgins 
1958, Dixon 1965). Extensive ab inirio calculations with an A 0  basis including f- 
functions located at  the N atom, as well as the s- and p-type bond functions, have been 
published by Buepker et al. (1981). In order to get a basis for a more refined treatment of 
the large-amplitude bending vibrations, the bending curves for the XZB,  and A.2A,  
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114 M .  Per2  et al. 

states have been calculated by optimizing the N-H distances at a number of values of 
bond angle. The dependence of the bond distances (figure 7).as well as the ,B and ,C 
terms (figure 8) on the bending coordinate have been computed. 

The overall agrement between the theoretical predictibns and the data obtained 
experimentally is very good. Calculated equilibrium bond lengths and angles agree 
within 001 A and 1" of their observed values and computed vibrational frequencies 
agree to within 3% of their available measured counterparts. The calculated T, value for 
the A2A,-X2B, transition of 11350cm-' is in excellent agreement with the value 
based o n  an empirical fitting procedure (Jungen et al. 1980 a) of 11294 cm- l. The 
theoretically predicted vibronic structure of the electronic transition agrees very well 
with the observed spectrum (figure 3) and the intensity distributions in the band 
progressions are in almost quantitative agreement with the experimental findings 

I I I I I I I I 
180 160 140 120 100 ao 60 40 ~ H N H  

Figure 7. Top: ub initio potential surfaces for bending vibrations in the state of NH, (solid 
lines) (Buenker et al. 1981). 0, actually calculated points corresponding to the optimized 
N-H distances for each angle;. . . , points generated employing the spline procedure. 
Dashed links denote the potential curves deduced by Jungen et al. (1980 a) on the basis of 
experimental findings. Bottom: calculated and experimentally deduced dependence of the 
N-H distances in NH, on the bending coordinate. 
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Ab initio treatment of the Renner-Teller efect 115 

Figure 8. Variation of dipole moments, electronic transition moment (top) and non-adiabatic 
matrix elements 

(bottom) for the two lowest electronic states of NH, ( X  'B, and A 'A,) with change in the 
bending coordinate. 

(figure 9). However, in spite of this general agreement, there exist some discrepancies 
between the theoretical results and those obtained directly in experiments and/or 
derived on the basis of experimental findings. Since these discrepancies concern not 
only the NH, radical but are systematic in nature, they merit a brief discussion. 

As already mentioned in $ 3  of this paper, the poorest agreement between the 
ab initi~ and (direct) experimental results occurs with respect to the positions of higher 
vibrational levels; the calculated term values are systematically higher (figure 3). This 
finding is a consequence of 'the fact that the potential curves derived on the basis of 
observed bands are generally flatter in the region of large values of the bending 
coordinate p (i.e. small bond angles) than those obtained in ab initio calculations. As 
already discussed in $ 3, however, this situation does not necessarily imply that the ab 
initio curves are too steep. Various potential curves can be obtained on the basis of the 
same set of experimental observations, depending on  the form of the assumed 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
2
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



116 M .  P e r 2  et al. 

I 
0 

L 

0 0  80 

0 

60 0 
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Figure 9. Comparison of ab initio results (0) and those derived by Jungen et al. (1980 a) on the 
basis of experimental data (0 )  for the intensity distribution in the bending progress of 
the A 2Al-X 2Bl transition in NH,. The calculated Refo,es,o,, values are normalized to  agree 
with the maximum of intensity of u ; = O  in Jungen et al. (1980a). 

hamiltonian (kinetic energy), on the assumptions about the relative locations of other 
neighbouring electronic states, etc. This point is illustrated in figure 7, where a 
comparison is made between the ab initio potential surfaces for bending vibrations and 
the p-dependence of the bond lengths and the corresponding quantities obtained via 
fitting of the experimental data (Jungen et al. 1980 a). It can be seen that at large values 
of p the discrepancies between the two sets of results for both potential surfaces and 
bond lengths become rather pronounced, whereby at least the ‘experimental’ N-H 
distances cannot be realistic. In spite of this circumstance, the vibronic energy levels 
calculated using the ‘experimental’ potential curves and bond lengths (which enter into 
the hamiltonian through the kinetic energy operator) reproduce the observed spectrum 
very well. However, this is not surprising because the same assumptions are made in 
deriving the potential surfaces and bond lengths from available experimental data as in 
the calculation of the vibronic levels themselves. 

A much more serious reason to question the reliability of the ab initio potential 
surfaces seems (at least at first glance) to be the discrepancy between the calculated 
positions of the bands and those directly observed. However, this result can also be 
caused by (i) inadequacy of the one-dimensional treatment of the bending vibrations, 
since it cannot be expected that the stretch-bend interaction is exactly treated by a one- 
dimensional hamiltonian, and (ii) the presence of other electronic states which can 
interact with the Rennef-Teller components, thereby perturbing their potential 
surfaces (Bell and Schaefer 1971, Peyerimhoff and Buenker 1979 b). The effect of other 
states is included automatically in the ‘experimental’ potential surfaces, but is totally 
absent in the ab initio calculations under discussion. 
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Figure 10. Comparison betweeen calculated and observed K=&2 and K =  1-3 vibronic 
splittings in the A ’A, state of NH, as functions of the vibrational quantum number. 

The calculated energy differences between the K = 0, K = 2 and K = 1, K = 3 levels 
corresponding to the same vibrational quantum numbers are presented in figure 10, 
together with the experimental data. Since the ab initio calculations are not capable of 
getting the relative spacings of the respective unperturbed A 2A, and X ’B, vibronic 
levels to an accuracy of better than 100 cm- ’, it is not surprising that they do not allow 
for a satisfactorily detailed description of the strong local perturbations. However, 
when the local perturbations are not present there is good agreement between the 
experimental and theoretical results. The same conclusion applies to the intensity 
distributions presented in figure 9. 

The effect of replacing the +B and +C terms (figure 8) by their asymptotic values f A 
and -A2 respectively has been analysed by Perik et al. 1983 a). I t  has usually been 
argued that the above approximation does not diminish theaccuracy of the calculated 
vibronic levels because +B and +C appear in the hamiltonian matrix multiplied with the 
term T3 having a singularity as p-0, causing their contribution to be strongly weighted 
towards the linear geometry for which and 4C really become f A  and -A2. 
However, it was shown (Perik et al. 1983 a) that the higher terms in the series +B =f(p) 
cause a shifting of the positions of the vibronic levels by a magnitude of order 1.0cm-I. 
This correction is proportional to the K-value and has opposite sign for the two 
component electronic states. So it represents an effect which cannot be safely neglected 
when high accuracy is desired. The higher terms in the diagonal +C terms cause a 
practically parallel shift of all the vibronic levels, but its magnitude is not the same for 
both Born-Oppenheimer potential surfaces. In NH, the X ’B, levels show an increase 
of 17 cm- ’, for example, while all A ’A, counterparts are shifted by about 14 cm-’. In 
this way the transition energies between X and A vibronic levels are decreased by 
roughly 3 cm-I as a result of making this improvement in the theoretical treatment. 
The diagonal +C terms can be incorporated into the Born-Oppenheimer potentials 
but, because of the fact that they also appear multiplied with a mass-dependent factor 
T3, the potentials corrected in this manner are not isotopically invariant. On the basis of 
this analysis it can be concluded that the replacement of +B and +C terms by their 
asymptotic values causes an error of the magnitude of 3-5 cm-,, so that the reliability 
of the description of local perturbations and similar effects without knowledge of the 
explicit dependence of +B and +C terms on p can suffer from omission of such details. 
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PH,, HzS+ 
The results of an ab initio study of the structure of two lowest-lying electronic states 

of the PH, radical, correlating with the 211u state, have been reported by PeriC et al. 
(1979 a). Generally very good agreement between the theoretical and available 
experimental data can be noted. This conclusion is especially valid for progressions in 
the bending vibrations in absorption spectra, for which the observed and calculated 
positions of the bands as well as the appearance of the associated intensity distribution 
are very similar to one other. Some experimentally undetermined structural para- 
meters (frequencies for stretching vibrations) have also been calculated. In another 
paper (Perii: 1980) the results of an ab initio treatment of the Renner-Teller effect in the 
'nu state of PH, have been described. 

Bruna et al. (1980) have also reported potential surfaces for the two components of 
the state of H,S+. A comparison was made between the ab initio potential curves 
and those deduced by fitting the experimental data (Duxbury et al. 1972, Dixon et al. 
1972). It was found that the agreement between the two sets of potential surfaces in the 
bond-angle range 180"-80" was very good. The distinctions become relatively large 
only at very strongly bent geometries (as in the case of NH,). These discrepancies were 
explained by (a) the fact that the ab initio curves were calculated at fixed bond lengths 
and (b) that the interaction between the upper 2Al state and a third ('B,) state play a 
significant role at small angles (figure 1 l), both states assume the same (A') symmetry at 
the lower C, symmetry which is reached by asymmetric distortions and therefore the 
corresponding potential surfaces strongly perturb each other in this region. The 
presence of the 'B, state was ignored in the ab initio calculations for the 'Al potential 
surface, so that relatively poor agreement between the theoretical and 'experimental' 

-341.80- 

PH2 

.85- 

-342.00 's5: \ 

r- 2.68 au 

Figure 1 1 .  Calculated CI bending curves for the three lowest states in H,S+ (Bruna et al. 1980) 
and PH, (Perik et al. 1979 a). The dashed lines indicate the 'B, curves for the optimized SH 
(PH) distances. The circles are data which are obtained by using the analytic functions 
(Duxbury et al. 1972, Barrow et al. 1974) which give the best fit to the experimental data. 
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potentials is not surprising. Similar conclusions result from a comparison of the 
ub initio surfaces for PH, (PeriC et al. 1979a) and the experimentally deduced ones 
(Barrow et al. 1974). As in the case of PH,, the positions of the observed bands and the 
intensity distribution in the bending progression in the absorption spectrum of 
H,S' are reproduced quantitatively. An ab initio study of the Renner-Teller effect in 
H,S+ has been presented by PeriC and Krmar (1980). 

HNO+ 
HNO+ is another interesting free radical of interest in astrophysics because it is 

believed to be present in interstellar space. Herzberg (1971) indicated that the 
absorption spectrum observed at 7200 A (1.73 eV) could be caused by an electronic 
transition in HNO +. This assumption was supported by ab initio calculations (Marian 
et al. 1977, McLean et al. 1978, Bruna and Marian 1979), giving for the vertical 
transition between the ground 12A' and the lowest-lying excited state 1'A" of HNO' 
the energy values of 1.78 (McLean et al. 1978) and 1.65 eV(Bruna and Marian 1979). In 
order to give a more definite answer to the question whether the observed spectrum at 
7200A really originates from HNQ', a study of the vibrational and rotational 
structure of the 12A"-12A' transition has been performed (PeriC et al. 1982). The two 
electronic states in question correlate at linear molecular geometry with a 211 state and 
thus exhibit a Renner-Teller effect. The calculations of the vibronic levels have been 
performed employing the bending potential curves obtained with a relatively small A 0  
basis without atom-centred d- andf-functions and calculated at constant internuclear 
distances (i.e. the stretch-bend interaction has been completely neglected). Never- 
theless, on the basis of experience with .similar systems it could be expected that the 
theoretical predictions should be rather reliable. The most intense C bands in 
absorption are predicted to appear at 10666 cm- ' (0; = 5), 12556 cm- ' (vi = 7), 
13833cm-' (ui=9) and 15411 cm-' (vi= ll),  with intensities proportional to 0.149, 
0.300,0.301 and 0.161 respectively. The strongest of these bands (0; = 9) should have a 
wavelength of 7230 A, in seemingly strong support of Herzberg's assumption. It should 
be noted, however, that such excellent agreement between the observed and calculated 
band positions must be assumed to be accidental; because of the shortcomings in the 
A 0  basis and the approximations made in the calculations, the calculation error is 
usually expected to be of the order of 02eV. 

HNF 
An ab initio study of the two lowest-lying states of HNF, X ,A1', A ,A' ('ll) has also 

been reported by PeriC et al. (1983 b). The main features of the observed spectrum of this 
system are reproduced and some unknown molecular constants calculated. The 
general agreement between the results of the calculations and available experimental 
data is satisfactory. However, some disagreement in the calculated and observed 
intensity distributions (Woodman 1970, Lindsay et al. 1979) are present. These 
discrepancies can hardly be explained solely in terms of errors in the calculations; at the 
same time, the intensity distribution found experimentally seems to be quite 
consistent with the equilibrium geometries also derived from experimental data. 

c3 
The C3 molecule represents a classical example of the weak Renner-Teller effect 

characterized by linear equilibrium geometries for both component electronic states. In 
this case it is impossible to reproduce even the coarse structure of the spectrum without 
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Figure 12. Comparison of the calculated vibronic term values (PeriC and RadiC-PeriC 1979) for 
the 'II, state of C, (second column) with the experimentally obtained values (Gausset et al. 
1965). The results presented in the third and fourth columns correspond to calculations in 
which vibronic coupling is neglected. 
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considering the vibronic interaction. Although based on the potential surfaces 
calculated using a small A 0  basis (RadiC-PeriC et al. 1977), the results of an ab initio 
treatment of the Renner-Teller effect in the 'nu state of C ,  (Perib and Radib-PeriC 1979) 
are in good agreement with experimental findings (figure 12). 

5. Conclusion 
A summary of the usual uncertainties in the ab initio results presented in this review 

is given in table 3. The magnitude of the calculation errors are the consequence of the 
general philosophy (and corresponding compromises) applied to obtain as much 
useful information as possible concerning molecular spectra, spending as little 
computer time as possible. In  extreme cases only the bending potential curve is 
constructed (on the basis of 5-7 points calculated at  fixed internuclear distances). In 
such cases quite close agreement between theoretically and experimentally derived 
structural data cannot be expected. As discussed in $ 5  3 and 4 of this review 
enlargement of the A 0  basis, optimization of the internuclear distances for various 
bond angles, approximate consideration of the coupling between different vibrational 
degrees of freedom, etc. generally leads to a diminution of the computational error. On 
the basis of explicit consideration of the effects of various approximations, however, it 
can be concluded that there exist definite limits in the overall accuracy, including an 
explicit treatment of the coupling between various degrees of freedom as well as 
interactions between neighbouring electronic states, etc. 

Table 3. Error estimates for calculated data in this work. 

Quantity Calculating error 

Equilibrium internuclear distance 0.01 A 
Equilibrium bond angle 1-2" 
Electronic transition energy 005 eV 
Stretching vibrational frequency 100-200cm-' 
Bending vibrational frequency 50cm-' 
Quantum number of the most intensive 

band in a progression O ( +  1) 

In this connection the important question can be raised as to whether it is really 
necessary to achieve experimental accuracy in such calculations to make them useful. 
In our opinion, a theoretical and an experimental study of a molecular spectrum should 
be complementary to one another rather than competitive. It is quite difficult to 
calculate the position of a band with the same accuracy with which it can be measured; 
on the other hand, it is sometimes very difficult to make a correct assignment of the 
observed bands, or to derive the values of certain structural parameters when the 
necessary experimental information is not available in sufficient quantity (e.g. 
frequencies of stretching vibrations). In these cases, as well as whenever insight into the 
mechanism of various interactions is sought, the ab initio calculation can be 
indispensable. In summary it seems fair to say that experimental and theoretical means 
do not exclude one another in such investigations, but on the contrary should be 
employed in parallel in attempting to form an accurate picture of the molecules 
responsible for observed spectral phenomena. 
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